Skip to main content

Posts

Showing posts with the label Japanese

WinMerge のセットアップと使う方

WinMerge は、Windows 用のオープン ソースの差分およびマージ ツールです。WinMerge は、フォルダーとファイルの両方を比較し、違いを理解して扱いやすい視覚的なテキスト形式で表示します。この記事でWinMerge のセットアップと使う方を教えます。 source: https://winmerge.org WinMerge をダウンロード WinMerge のウェブサイト に行って、「WinMerge-2.16.44-x64-Setup.exe」ボタンを押し、WinMerge 2.16 をダウンロードしてください。 WinMerge をインストール ダウンロードされたソフトウェアをクリックし、ポップアップ画面で「Next」を押してください 「Languages」部分をスクロールダウンし、「Japanese menus and dialogs」を選択し、「Next」ボタンを押してください ターミナル等からも WinMerge をアクセス出来ようにする為に「Add WinMerge folder to your system path」オプションを選択し、希望によって他のオプション選択してください 「Enable Explorer context menu Integration」オプションを選択したら、フォルダ/ファイルを右キリックし、コンテクストメニューから WinMerge を開くようになります。 「Install」ボタンを押し、「Next」ボタンを押し、その後、「Finish」ボタンを押してください 言語を日本語にする もし WinMerge の言語が日本語じゃなくて、英語なら、「Edit」タブから「Options」を押してください。 ポップアップ画面で右側の下にある「Languages」と言うドロップダウンメニューから日本語を選択し、「OK」ボタンを押してください WinMerge を使う方 「ファイル」タッブから「開く」を押し 参照ボタンを押し、比較したいフォルダ・ファイルを指定 比較したいフォルダを指定する方法: ポップアップ画面から対象のフォルダーを選択し、「Open」を押してくだい 何も選択しないで、「Open」を押してくだい 右側下にある「比較」ボタンを押し ...

SQLFluff入門:SQLコードをクリーンかつエラーフリーに

コードを書いた後に実行したとき、エラーが発生するとイライラします。さらに厄介なのは、そのエラーの原因が分からないときです。また、複数のメンバーがいる大規模なプロジェクトでは、メンバーごとにコードの書き方が異なる傾向があり、その結果、コードレビューが難しくなり、ソースコードに不整合が生じます。コードを実行する前にエラーを検出できた方が良いと思いませんか?さらに、チームメンバー全員が同じフォーマットでコードを書けば、もっと効率的になるでしょう。 SQLFluffと言うツールがこの全ての事を実現させます。 SQLFluffは何でしょう? SQLFluffは、SQLファイル用の最も人気のあるリンターです。構文エラーを検出すると、そのエラーが発生した行番号や位置、エラーの原因が表示されます。SQLFluffはエラーの検出だけでなく、SQLコードのフォーマットや構文エラーの修正も可能です。PostgreSQL、MySQL、Google BigQuery、Snowflakeなど、複数の SQL 言語 をサポートしています。つまり、SQLコードを実行する前に構文エラーを検出・修正できるので、非常に役立ち、重要な作業に集中することができます。また、SQLFluffは非常に設定が簡単で、コンマの位置、文字の大文字小文字、インデントなどのルールを簡単に設定できます。 エンジニアは自分のパソコンにSQLFluffをインストールし、SQLFluffを利用してコードのエラーを検出・修正した後にGitにコミットし、GitLabやGitHubなどにプッシュすることをお勧めします。 全てのドキュメントはこちらにあります : Docs 。 インストール SQLFluff は以下のようにインストールできます VSCode エクステンション プリコミットフック コマンドラインツール CI/CDパイプラインツール SQLFluffをコマンドラインツールとして設定し、実行してくださいのが一番簡単です。また、この記事でプレコミットフックとしての使い方も説明します。 SQLFluffをコマンドラインツールとしてインストール 注意点: SQLFluffをインストールするにはPythonとpip (またはpoetryやpipenvなどのパッケージマネージャ)が必要です。この...

例を使ってSnowflakeストアドプロシージャを学びましょう

Image by Gerd Altmann from Pixabay データベースの操作において、反復的なタスクや複雑なロジックの実行は、時間と労力を要する作業になりがちです。Snowflakeストアドプロシージャは、こうした課題を解決するための強力な機能であり、SQLクエリを拡張して、より効率的かつ安全なデータ処理を実現します。 本稿では、Snowflakeストアドプロシージャの基本的な概念から、JavaScript、Python、そしてSnowflake Scripting (SQL)といった複数のプログラミング言語を使った作成方法、さらにはセキュリティ対策まで、実践的な知識を提供します。 小売業におけるキャンペーン管理を例に、県名に応じてキャンペーン情報と割引率を一括更新するストアドプロシージャを実装します。 ストアドプロシージャと言うのは ストアドプロシージャを関数の一つ種類と考えてもいいです。ストアドプロシージャを記述して、 SQL を実行する手続き型コードでシステムを拡張できます。ストアドプロシージャを作成すると、何度でも再利用できます。 値を明示的に返すことが許可されていますが、必須ではないです。ストアドプロシージャを実行するロールの権限だけではなく、プロシージャを所有するロールの権限でも実行出来ます。 サポートされている言語: Java JavaScript Python Scala Snowflake Scripting (SQL) ストアドプロシージャの形: CREATE OR REPLACE PROCEDURE プロシージャ名(arguments argumentsのタイプ) RETURNS レターんタイプ LANGUAGE 言語 -- (例:python, JavaScript等) -- RUNTIME_VERSION = '3.8' (言語がpython, java, scalaなら必要 ) -- PACKAGES = ('snowflake-snowpark-python') (言語がpython, java, scalaなら必要 ) -- HANDLER = 'run' (言語がpython, java, scalaなら必要 ) EXECUTE AS ...

SnowflakeのNotebookでStreamlitを使う方法

Image by Jan from Pixabay データ分析において、結果を分かりやすく可視化し、共有することは非常に重要です。従来のBIツールに加えて、近年ではインタラクティブなデータアプリが注目されています。 Snowflake で Notebook と Streamlit を使えるのを知っていますか? Notebook の中で Streamlit を使えるのも知っていますか? SnowflakeノートブックとStreamlitを使えば、Pythonの知識だけで、簡単にインタラクティブなデータアプリを作成できます。Snowflakeノートブックは、コード、Markdownによる説明、そして可視化結果を1つのドキュメントにまとめることができるため、データ分析の作業効率を向上させます。 この記事では、Snowflakeノートブック上でStreamlitを使ってインタラクティブなデータアプリを作成する方法を紹介します。SQLクエリからデータを取得し、Streamlitのコンポーネントを使って動的なグラフや入力フォームを備えたアプリを構築する手順を、実際のコード例とともに解説します。 Notebook と Streamlit は何でしょう? Notebook ノートブックは、コードとその出力を 1 つのドキュメントに統合し、コード、説明文、視覚化、その他のリッチ メディアを組み合わせることができます。つまり、1 つのドキュメントで、コードを実行し、説明を追加し、出力を表示し、作業をより透明化することができます。 人気なのノートブックは Jupyter Labs と Google Colab です。 Snowflake もノートブックをサポートしています n ので、Snowflake のノートブックでは Markdown , Python と SQL コードを書けます。 内部ノートブックは .ipynb . Interactive Python Notebook (インタラクティブ Python ノートブック) ファイル形式を使用します。 Notebook に加えて、Snowflake が Streamlit もサポートしています。 Streamlit Streamlit を利用したら、Python だけを使ってインタラ...

ワークフローの合理化:Snowflake アラートを Slack に送信する

Snowflake と Slack の連携でデータエンジニアの仕事がはかどる! Snowflake と Slack を連携させると、データエンジニアの業務効率が大幅に向上します。 その理由を見ていきましょう。 リアルタイムなエラー検知とデバッグ : これまでのようにログを常に監視しなくても、Snowflake でエラーが発生した場合に Slack チャンネルに自動通知を送信するように設定できます。これは、コードのエラーを監視し、すぐに知らせてくれる専任のアシスタントがいるようなものです。迅速な問題解決が可能になります。これは、Webhook を使用することで実現します。Webhook とは、イベントをトリガーとして Snowflake から Slack に送信される自動 HTTP リクエストです。 チーム全体の情報共有 : Slack 連携により、データパイプラインなどの処理状況をチーム全体に共有することもできます。パイプラインが完了、失敗、または問題が発生した場合に、共有チャンネルに通知を送信するように Snowflake を設定できます。これにより、全員が状況を把握できるようになり、不要な進捗確認会議を減らすことができます。 この連携により、Slack がデータワークフロー管理の強力なハブとなり、データエンジニアの業務をよりシンプルかつ生産的にします。 SnowflakeとSlackを統合する方法 Snowflake の NOTIFICATION INTEGRATION と言う機能と Slack の Webhook を利用し Snowflake から Slack にメッセージを送る事が出来ます。 同じ方法を使って、Snowflake から Microsoft Teams と PagerDuty にもメッセージを送るのは可能です。 Slack の使う方の概要が必要なら、この 動画 を見てください。 Webhook は http リクエストです。これは API 呼び出しで、リバース API または Push API と呼ばれることもあります。Webhook の特徴は、何らかのイベントが発生したときにクライアントがサーバーにコールバック (http リクエストを送信) するように指示することです。...